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In a recent paper [S. Boettcher and M. Moshe, Phys. Rev. Lett. 74, 2410 (1995)], a simple method was
proposed to generate solvable models that predict the critical properties of statistical systems in hyper-
spherical geometries. To that end, it was shown how to reduce a random walk in D dimensions to an an-
isotropic one-dimensional random walk on concentric hyperspheres. Here I construct such a random
walk to model the adsorption-desorption transition of polymer chains growing near an attractive cylin-
drical boundary such as that of a cell membrane. I find that the fraction of adsorbed monomers on the
boundary vanishes exponentially when the adsorption energy decreases towards its critical value. When
the adsorption energy rises beyond a certain value above the critical point whose scale is set by the ra-
dius of the cell, the adsorption fraction exhibits a crossover to a linear increase characteristic of poly-

mers growing near planar boundaries.

PACS number(s): 05.20. —y, 05.40.+j, 05.50.+q

I. INTRODUCTION

The study of polymers is rightfully popular with exper-
imentalist and theorist alike [1,2]. Their diversity and
practical importance in biology and chemistry makes ex-
perimental investigations rewarding. The variety and
complexity of polymeric systems rising from a few simple
building blocks inspires much theoretical and numerical
work using techniques such as scaling [3], renormaliza-
tion group [4], and Monte Carlo calculations [5]. While
we are far from a solvable first-principles model of poly-
mer systems resembling reality, the conception of
simplified statistical models might allow us to capture ele-
mentary aspects of some of the critical phenomena exhib-
ited by real polymers. Thus, even simple models of poly-
mers, such as any solvable statistical model with nontrivi-
al behavior, warrants attention because of the insight
granted into the interplay of fundamental properties such
as the range of forces, the symmetries of the system, and
geometrical constraints [6].

The simplest polymer system is that of an unbranched
chain of monomers embedded in some volume. While
practically difficult to obtain, it is simple to model this
system by a self-avoiding random walk [7]. The proper-
ties of random walk models can easily be studied numeri-
cally and in some cases even analytically [8]. In this pa-
per, I present the study of a polymer growing in the
neighborhood of an attractive boundary. The properties
of this polymer can be derived analytically when modeled
as a directed self-avoiding random walk on a lattice that
only allows for rectangular turns. Earlier investigations
have focused on a polymer growing in the neighborhood
of a planar boundary [9]. Here I use a recently proposed
model for random walks on a hyperspherical lattice to ex-
tend the theory to D-dimensional hyperspherical boun-
daries [10]. I then give a detailed discussion of the solu-
tion for the adsorption fraction of an infinitely long poly-
mer P (k) at an attractive cylindrical boundary with a po-
tential « [11]. The adsorption fraction is nonvanishing
only if the attractive potential on the boundary is larger
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than a critical value k.. I show that the critical proper-
ties of the adsorption fraction in this case are profoundly
different from those found near planar boundaries. While
the adsorption fraction scales linearly at a planar bound-
ary, I find for a cylinder of radius m =0 in monomer
units and for Ak=k—k, \O" that the asymptotic
behavior of P (k) is given by

4 o—8/19(m+1)Ak]
81 (m +1)Ax?

If the radius m of the boundary is large compared to the
length of a monomer, one would expect to recover the
scaling behavior that is characteristic of a planar bound-
ary, except for the immediate neighborhood of the criti-
cal point. In fact, I find for m <<1 that there is a cross-
over between linear and exponential scaling when
mAk=0@(1). That is, if mAk<<1, then Eq. (1) holds,
while linear scaling is obtained as soon as m Ax >>1.

The simplicity of the dynamics in this random walk
model and the nontrivial phenomena obtained from it
raise interesting questions regarding the universal proper-
ties of this lattice. According to universality [12], at the
critical transition only a few fundamental properties of
the system determine its behavior. In this model, the
critical behavior arises from the balance between a
short-range attractive potential and the entropy of walk
configurations in space. I argue that the entropy at the
critical point is sufficiently well represented by a hyper-
spherical lattice. It has been shown that such a lattice
reproduces all the universal features expected of lattices
[10]. The critical behavior obtained on this lattice for ro-
tationally symmetric systems should therefore reflect the
universal critical behavior of the system. The advantage
of random walks on hyperspheres is to describe the criti-
cal behavior in a minimal and tractable way in compar-
ison, for example, to a far more structured hypercubic
lattice.

In the following section, I generalize the theory for a
polymer growing at an attractive boundary in a D-
dimensional hyperspherical geometry. In Sec. III, I dis-

P(k)~ (1)
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cuss the theory for the special cases D =1,2 and 3. In
Sec. IV, I analyze in detail the solution obtained for
D =2, the case of an attractive cylindrical boundary. I
evaluate the solution asymptotically near the critical
point to derive Eq. (1). Finally, in Sec. V, I discuss some
implications of my findings.

II. DIRECTED WALK MODEL
FOR THE POLYMER ADSORPTION TRANSITION

In this paper I want to describe the growth of a single-
stranded polymer at an attractive hyperspherical bound-
ary. The boundary is considered to be impenetrable. The
first monomer in this polymer chain is grafted to the
boundary. New monomers are added to the end of the
existing polymer chain in a random fashion. The addi-
tion of each monomer obtains a fugacity of z, while the
addition of a monomer on the boundary yields an energy
gain for the system of k = 1. For simplicity, I want the po-
lymer to be stretched out (directed) along the boundary
to avoid self-interaction and excluded-volume effects.

Polymers in solution at an attractive boundary undergo
an adsorption-desorption transition at a critical value of
the attractive potential «, [13]. From the theory for a
single-stranded polymer it is found that P(«), the frac-
tion of adsorbed monomers in the limit of an infinitely
long polymer, attains a finite value only for « larger than
k. [9]. Here I am interested in the critical properties of
the adsorption fraction for a polymer as a function of the
curvature of the attractive boundary.

The growth process of a polymer can be modeled as a
directed, (D +1)-dimensional random walk in a D-
dimensional hyperspherical geometry. (The extra dimen-
sion refers to the time coordinate of the walk, which cor-
responds to the length L of the polymer extending along-
side the D-dimensional hyperspherical boundary.) I
choose for this random walk to occur on a lattice consist-
ing of a set of concentric hyperspherical surfaces S,
equally spaced in units of a monomer length. The inner-
most surface S,,, m =0, representing the attractive
boundary, has an integer radius of m in monomer units,
the next surface S,, ,, has a radius of m +1, and so on.
The (virtual) surface area of the nth surface is

2P 72 o
I'(D /2)

The walker resides before each step in some region n = m
between the surface S, and the surface S, ;. In general,
the statistical weights for proceeding are dependent on
the location of the walker and the direction of the next
step due to the anisotropy of the spherical geometry. A
step parallel to the boundary to stay in region »n is taken
with some weight P, (n), while the weights for the
walker to either move outward to region n +1 or move
inward to region n —1 may be given by P ,(n) and
P, (n), respectively. For the case of a cylindrical bound-
ary D =2 such a walk is shown in Fig. 1.

For a growing polymer or a random walker above a
convex boundary like that of a D-dimensional hyper-
sphere, there is on each step always more ‘“‘open space”
(i.e., accessible states) available in proceeding outward
than in proceeding inward. This anisotropy is more pro-

S, = 2
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FIG. 1. Random walk on a lattice consisting of concentric
cylindrical surfaces of unit radii. Such a walk serves as a model
for a polymer growing at an attractive cylindrical boundary
with radius m (bold lines). The polymer is initially grafted to
the boundary and is growing to the right. Every time a mono-
mer is added at the boundary, the polymer gains in potential en-
ergy by an amount «.

nounced for stronger curved boundaries, i.e., increasing
D. A walker anywhere in region n has for an inbound
step a number of target states available that is propor-
tional to the virtual surface area S, that is traversed. For
an outbound step, the number of states available is pro-
portion to the area S, , ;. Using Eq. (2), this effect can be
accounted for by assigning for all n >m

Pstay(n)El ’

2Sn 2nD_1
P, (n)= =35 T (3)
S, +S, 41 =n +(n+1)
285,40 2(n+1)2!
Pout(n)_ T D-—1 D—1
Sn+Sn+1 n +(n +1)

whereas on the boundary S,,, I choose
Py, (m)=1, Py (m)=0, P, (m)=1. 4)

(Overall factors are chosen to conform to Ref. [9] when
D =1 or m— x.) Note that the walk is prohibited from
reaching inward from region m by setting P;,(m)=0.
The walk starts in region m. Every step is further
weighted with a factor z and each parallel step inside the
region m acquires an additional factor of «.

A walk with L >0 parallel steps has reached L levels
{h;}EXL, h; > m, above or at the boundary. I want to re-
strict these walks such that |h; ., —h;| <1,0=<i <L. This
restriction on the directed walk, in the spirit of a restrict-
ed solid-on-solid model, has no impact on the critical
behavior of the system for an ensemble average of walks
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of all length L. But this restriction implies that each ran-
dom step that leads into a radial direction must be fol-
lowed by a deterministic parallel step. Thus, while the
walk in Fig. 1 consists of N =26 links, only L =14 ran-
dom choices of levels A;, 1 =i <L, were required.

A transfer matrix Ty, , ,», that describes the transition
of the walker from the ith to the (i +1)st level is then
given by

AP S . .
)=z 7k ™ [Py (08, + Py ()8, ;

+Pin(i)6j+l,i] . (5)

The transfer matrix 7 is in general asymmetric because of

the anisotropy of the hyperspherical geometry. It is sym-

metric only for the case of a planar geometry, D =1,

where P;, =P_,. The total statistical weight of a certain
walk configuration is then given by

258, Tnong Ty -+ - Thy oy (6)

such that the partition function Z; for all walks extend-
ing L parallel steps away from the starting point is

z,=z""T" , @)

where b'” and € are vectors accounting for beginning and
end effects. The total partition function for walks of all
length Z=3?_,Z,; then evaluates to

Z(z,k)=2zb""T(1—2zT)" ¢ . (8)

For any given k, if A, (k,z) is the largest eigenvalue of
T, then Z diverges for z 7z (k), where z _ (k) is defined
by

1=z (K)Apax(K,z  (K)) . )
The average length of a walk is usually defined to be
(N(z,k))=2z3,InZ(z,k) , (10)

whereas the average number of steps taken on the bound-
ary can be obtained through
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Both (N) and (N,), diverge like some power of
1/[z,(k)—2z]forz ~z (k). Thus, for z /z , (k), the limit
is obtained where the average polymer is infinitely long.
At the same time, (N, ) refers to the number of mono-
mers that are adsorbed on the boundary as a function of
the attractive boundary potential «. The fraction of ad-
sorbed monomers P (k) is given by

(N(z,k)) K

_ oy dz (k)
_z/i:’m (N(z,k))

- z (k) dk

P(k) (12)

Thus z (k) marks a line in the («,z) plane for which
P (k) is defined.

While this random walk model is in its details only a
crude description of a polymer growing in a continuum,
it can be expected that the critical properties of the poly-
mer system in the infinite chain limit is well approximat-
ed by such a model. The critical properties of the poly-
mer system arise from the balance between the entropy of
all possible polymer (or walk) configurations in the space
above the boundary and the energy gained in the attrac-
tive potential on the boundary. One might anticipate
that the critical properties of this system will vary in an
interesting way as a function of the curvature of the
boundary. For instance, the more the boundary is
curved, the larger the space available for walk
configurations away from the boundary and therefore the
larger the entropy. I will show that for a curved bound-
ary the critical transition is substantially weaker than in
the case of a planar boundary.

III. THE ADSORPTION PROBLEM
FOR PLANAR, CYLINDRICAL,
AND SPHERICAL BOUNDARIES

In this section, I use generating function techniques to
derive a differential equation that has to be solved to ob-
tain the spectrum of the transfer matrix 7. First, I dis-
cuss the differential operator for arbitrary D. Then, I ex-
amine the differential equation for the special cases of
D =1,2, and 3.

To determine the spectrum A of the transfer matrix 7,
I insert the weights in Egs. (3) and (4) into Eq. (5), leading

(N,(z,k)) =Kd,InZ (z,k) . (11)  to the eigenvalue problem
]
)”gn: 2 Tn,igi
i=m+1
2nP 1 2n +1)P 1
&tz - 1tz , n>m+2
P 1P TP T T P gy Bn e MET
_ 2(m +2)P !
- gm+1+2gm+z(m +2)D_1+(m_|_3)p~lgm+2’ n=m+1 (13)
2(m +1)P 1!
kg, t Kz =m .
&m (m+1)P 1 (m 42)p 1 Emt1> 1M
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This system always has a continuous spectrum, indepen-
dent of k, but the spectrum contains bound states only for
a certain range of «. If for a neighborhood of a value of «
the largest eigenvalue A, is given by the upper bound
on the continuous spectrum, then the adsorption fraction
vanishes due to Eq. (12), since A,,,,,—and thus z , —does
not vary with k. On the other hand, if a bound state ex-
ists, its eigenvalue usually varies as a function of « and is
larger than the continuous spectrum, which leads to a
nonvanishing adsorption fraction. Thus the existence of
bound states will prove to be the criterion for the appear-
ance of an adsorbed phase for the polymer. A bound
state has to satisfy a condition ensuring that the likeli-
hood of finding the walker in far-out regions n — o is di-
minishing sufficiently fast, i.e.,

g,—0 for n—o0 . (14)
It is convenient to define
(n? '+ +1)?""Yh,, n>m
&= l2am+1°"h, , n=m (13)
Then, Egs. (13) reduce to
=(1-M[n? "+(n+1)P "h,+2z0° " 'h, _,
+2z(n+1P " h, 1, n>m (16)
and
0=(k—A)h,, *+«zh,, . . (17)

To simplify the analysis of this problem, I define the gen-
erating functions

G(x)= é g,x" (18)
and

Hx)= 3 hx" (19)
Using the identity

Sn'x"h,=(x3,)3x"h, , (20
G (x) can be formally obtained from H (x) via

G (x)= l(xax)D_l-F%(xax)D“‘x H(x)

(x3,)P “1——(xa )P xe Ry, (1)

[(1—)»)

(x9, )D—‘+ (xa )P

= ,(1—7»)
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when D is a positive integer. Note that (x3,)? " 'x™
=mP~!x™ for m >0 or D > 1, but that (x3,)° " 'x"=1
for D=1 and m =0. The eigenvalue problem can be
converted from a difference equation for A, into a
differential equation for H (x). The condition in Eq. (14)
on g, translates into an analyticity condition on G (x):
The exponentially growing solutions for g, in Eq. (13) are
averted if and only if G (x) has no singularities for |x| < 1.
Thus one obtains bound states exactly when singularities
of G(x) appear inside the unit circle with eigenvalues
that are determined by a condition that cancels these
singularities.

The differential form of the eigenvalue problem is ob-
tained by multiplying Eq. (16) with x” and summing from
n=m-+1to :

S w7 x4+ Y (n+1)P27xmh,

n=m+1 n=m-+1

0=(1—A)

+2z 3 n? "%, +2z 3 n+1)P7x"m, .

n=m+1 n=m+1

(22)

After shifting indices and applying the identity in Eq.
(20), one gets
+%(xax Pl S

n=m-+1

0=(1—2) [(x3,)? ! x"h

n

x Zx”h +22—(x8 )P > x"h

n=m n=m-+2

+2z(x9, )P !

n -

(23)

Completing the sum by adding and subtracting the miss-

ing terms in the definition of H(x) in Eq. (19), one ob-

tains
0=(1—A) “1+—(xa

(_xa [H xX)—x m]

+2z(xd, )D-‘xH(xH—Zz%(xax -

X[H(x)—=x"h,—x™ h, .,]. (24)

Eliminating A, , by applying the boundary condition in
Eq. (17) and separating off the inhomogeneous part gives

(x, )D**+;1c—(xax Y21y } +22(xd,)P~'x +22i(xax yp -1 lH(x)

-1 i(xax )P 1x lx "R (25)

+22%(x8x P-142

A
K

=
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To further simplify the presentation, I multiply both
sides by x /(2z) and abbreviate

= 2z
A—1"
y=%(l—\/1—ez), (26)
Qx)=Vi(x —y)x—1/y)
to obtain
{Q(x)(x3,)P 1+ Q(x)Q"(x)[(x3,)? "L, x]_}H(x)
=[ apie [L[241 _{i+i
K € z € z
X(x9,)? "1x ]x”’hm , 27)

where [, ]_ is the usual commutator. Clearly, the opera-
tors in the inhomogeneous part are easy to evaluate but
remain as a shorthand notation to avoid ambiguities for
the case D =1, m =0. To proceed further in the analysis
of this differential equation, it is necessary to choose a
specific positive integer D. For a given D, one obtains an
inhomogeneous differential equation of order D —1. The
solution of this differential equation is uniquely deter-
mined through conditions imposed at the origin on H (x)
and its derivatives, using the definition of H(x) in Eq.
(19).

It is obvious from the differential equation in (27) that
H (x), and therefore G (x), generically has singularities at
least at x =y and 1/y. If ¥ is real and positive, then one
of these singularities must be located inside of or on the
edge of the disk |x| <1. Say that y <1. Then, to avoid
growing solutions of the form g, <y ™", a discrete eigen-
value A exists that is determined through the condition

lim |G (x)] < . (28)
x—y

For specific values of D, the left-hand side of Eq. (27)
can be simplified further. For instance, for the planar
case D=1, Eq. (27) is especially simple because all
differential operators disappear, the commutator van-
ishes, and the relation reduces to an algebraic equation

2 1+ x x™h,,
Q(x)? l ]

(29)
Applying the condition in Eq. (28) yields the relation for
the eigenvalues

1
K

2.1
€ z

G(x)=2H (x)=

Yo (30)

which was discussed in Ref. [9]. Note that despite the ex-
plicit appearance of the curvature radius m in Eq. (29),
the eigenvalue relation in Eq. (30) is independent of m, as
it should be for the planar case. It is a necessary condi-
tion on the eigenvalue relation for any D that it reduces
to Eq. (30) for a hypersphere of infinite radius m — .
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For D =2, the case of a polymer growing alongside an
attractive cylindrical boundary of radius m, one gets
[x9,,x]_=x and Eq. (27) reads

Q(x){Q(x)x9d, +[x9,Q(x)]}H(x)

=Q(x)x9,{Q(x)H (x)}
=‘ x| L[£+L o
Kl|le z € z
X(m +1)x ]x”’hm . (31)
Requiring that lim,_, ox ~ ™H(x)=h,, determines the
solution
H( i drt 1+ At 32
x) Q( f o0 L ), (32)
where I define for convenience
q=mtl (1|2 1 1| 2m+1 o
m Kkle =z z me

Thus, according to Eq. (21), G (x) is given by

G(x)=2x0,H(x)+H(x)+x"h,,

=h, x"+

m

5 |2m(1+Ax)x"'

m(1—x?)
Q(x)

fdt

The properties of G (x) will be discussed in detail in the
next section.

-+

1+At)J . (34)

For D=3, it is [(xd,)%,x]_=x(1+2x9,) and one
gets for Eq. (27)
{Q(x)(x9,)*+Q (x)[x3,0(x)](1+2x3, )} H (x)

=Q(x) |(x9,)2+

1 2
——1(x
0

v {Q(x)H (x)}

X(m +1)%x (x™h,, . (35)

For this case, and any other integer D = 3, there is little
hope to obtain the eigenvalue equation analytically. Lo-
cal analysis for H (x) is insufficient because the eigenvalue
condition requires exact knowledge of H (x) in the neigh-
borhood of both the origin and x =y <1.
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IV. CRITICAL POINT ANALYSIS FOR A POLYMER
NEAR A CYLINDRICAL BOUNDARY

In Eq. (34), I derived the generating function G (x) for
the eigenvalue problem in Eq. (13), which describes the
behavior of polymers growing near a cylindrical bound-
ary D =2. It is obvious that G (x) in general has singu-
larities at x =y and 1/y. If y is complex, it is y =1/y*
and both singularities are located on the unit circle. Then
it is A,,, =2, the value of the upper bound in the continu-
ous spectrum of the transfer matrix 7, that remains in-
dependent of «. Thus, since z,(k)=1/A,,, it is
P(k)x<dz, /dk=0 and the polymer is in the desorbed
phase.

For P (x)70, « has to be such that a bound state A ex-
ists that is larger than the continuous spectrum. A bound
state emerges for real positive ¥y <1. It can be deter-
mined by imposing the condition in (28). A local analysis
of G(x) for x 7y yields

mhm,ym +3/72

Vi1—y?
X [l em T+ AyO[(1—0(1—y0] 72

G(x)~(y—x)"3?

+ (finite terms), x /1y . (36)
Thus G (x) is finite at x =y if
0= [ldrem =1+ Ay [(1—0)(1—9y2)] 2. 37)
0

With A4 given in Eq. (33), this relation defines a bound
state A(k,z). For it to exist, it is necessary that ¥ <1, i.e.,
that k> «*(z), where k*(z) is obtained from Eq. (37) in
the (carefully taken) limit y 71,6 /1:

1+2z
1+z °

In Eq. (12) I defined the adsorption fraction P (k) in the
(k,z) plane on the line z, (k), where the polymer length
approaches infinity. The function z (k) is obtained im-
plicitly from Eq. (37) for z =z (k) and A=1/z (k).

It is now easy to determine the critical point for the ad-
sorption transition: Since a bound state and thus a
nonzero adsorption fraction first appears for y =e=1, I
obtain from the definition of € in Eq. (26), using Eq. (9),
that z, (k,)=1. Inserting this value of z into x*(z) im-
plies that

k*(z)= (38)

Ke=2% (39)

because the critical point for P (k) is located where the
line on which it is defined, z  (k), intersects with the line
k*(z). The behavior of k*(z) and z , (k) is summarized in
Fig. 2 for the case m =0. Note that for 1 <k <k, the
boundary is already attractive, but not sufficiently attrac-
tive to adsorb the polymer.

While the value of P (k) for arbitrary k can be obtained
numerically from the implicit equation for z (x), it is
simple to find the asymptotic behavior near the critical
point explicitly. First, using the integral definition of the
hypergeometric function F [14] I rewrite Eq. (37) as
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FIG. 2. The (k,z) plane with the lines «*(z) and z, (k) for
m =0. The adsorption fraction P(«) is defined only on the line
z,(k), where the average polymer length reaches infinity. An
adsorbed phase P(x)70 only exists when x> k*(z). Thus the
critical point «, is given by the value of « at the intersection of
both curves.

O0=F, +yAF, ., ,

(40)
P _F(%)F(m)F(‘ TS
m T(m +_;_) 79m:m 7,7/ .
If I now substitute
z=z,(k,)—Az , Az\O
(41)
k=k,tAxk , Ax\0
and only keep terms to sufficient order, i.e.,
e~1,
y~1—2V3Az'72 | Az\,0 (42)

and use formula 15.3.10 from Ref. [14]
F,~—In(1—y))—¢(m)+2p(1)—¢(L), y 1, (43)

I get
AZ"V%G—S/D(M + 1)Ak] . (44)
With
K,
P k)~ —=_ 48z 45)

z,(k,) dAk ’

I finally obtain Eq. (I). A more extensive calculation
shows that the next-to-leading-order corrections are ex-
ponentially smaller yet.

So far, I have considered the radius m of the attractive
boundary to be a fixed parameter. An interesting cross-
over phenomenon is revealed by investigating the asymp-
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totic behavior of the eigenvalue condition in (40) when m
is allowed to vary with respect to Ax. It appears that for
large m the asymptotic relation in Eq. (1) is invalid when
Ak is not sufficiently small compared to 1/m. Physically,
it is clear that for m — o any D-dimensional spherical
boundary acts like a planar (D =1) boundary on the
scale of a monomer length. One would thus expect to
find a crossover region Ak~m ~7 for Ak\.01, m >>1,
and some 7 >0, such that for Ak <<m ~" a nonlinear re-
lation such as Eq. (1) is valid, while for 1>>Ak>m "
the linear scaling characteristic of a planar surface is ob-
tained. (More complicated scenarios are conceivable, but
do not seem to be realized.) This is in fact visible in Fig.
3: While the adsorption fraction for all m < oo initially
varies exponentially, it eventually has an interval of near-
ly linear behavior that arises sooner the larger m gets.

I will now prove that for a cylindrical boundary D =2,
the crossover coefficient is 7=1. To that end, I will have
to reanalyze the eigenvalue condition in (40) to find a re-
lation between Ak and Az in the limits Ax\,0 and Az \\0,
while at the same time m — oo. Initially, it is not at all
clear whether 1/m is smaller than, larger than, or of
comparable size to Ak and Az. It is therefore necessary
to make a general dominant balance analysis [15]. It is
convenient to separate the range of all possibilities into
three distinct cases: (i) mAz!2=0(1), (i) mAz!"? <1,
and (iii) m Az!/2>>1, to localize the region in which the
crossover occurs. Clearly, one should investigate case (i)
first: If one finds either nonlinear or linear behavior
there, then one can exclude either case (ii) or (iii) immedi-
ately because it would have just the continuation of the
behavior in case (i).

For case (i), it is simpler to analyze the integral form of
the eigenvalue condition in (37), which I rewrite by sub-
stituting t =1—(1—y2)s as

vy d -
o=[ " === (1= N5

s(1+s)
-172
—(1—n2)_5%
X [1—(1 'y)1+s
X[1+yA4—yA(1—y>)s]. (46)
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FIG. 3. The exact adsorption fraction P(x) plotted for
m =0,1,2,3,© and KZKC——-%. For finite m, P (k) vanishes ex-
ponentially for K\ «., while it crosses over to a linear increase
when «—k,=O(1/mlnm). For m =« 1 recover the linear

behavior for P (k) for K\ k, that was found in Ref. [9].

Under the conditions for case (i), the integrad is sharply
peeked at s =0 and I can use Laplace’s method [15] to
find the asymptotic expansion of the integral. Since
1—y2~4V'3Az'/? and with

1

yA~4|——1 Az!7?

——42—AK—8\/§ ‘i—l
KC

c

—, (47)

I find that the right-hand side of Eq. (46) is in leading or-
der asymptotic to

1/6___ds m In(1—4V34z1/2%) VA2 142V 35 1/2
J, VeI [1+4V3Az1%) e
4 4 3 |1 12 2 1 172
X |——3— > Ak—8V'3 —1 [(1+2s)Az'2+ — 1 , mAz!2>>8>mAz . (48)
c ¢ c c

The conditions on 8 ensure that a sufficiently large integration interval is kept. They also make 1/8 sufficiently small
such that one can expand the exponential in Eq. (48) for all but its leading term and subsequently integrate to s = o
with exponentially small error. Then, to make terms of finite order vanish I need to set again «, =4%. To next order I
find that

w dse ¢
0 Vis(l+s)

has to vanish, where ¢ =4V 3mAz!/2 is simply some number of order unity. Disregarding numbers of order unity, I
finally get that Ak ~Az!/2, leading to a linear scaling relation by Eq. (45). Consequently, the crossover appears to occur

[2Ak—2V3(1+c +25)Az172) (49)
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already for case (ii).
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To analyze case (ii) I return to Eq. (40). But to obtain the desired relation, it is necessary in this case to retain one
more term in formula 15.3.10 from Ref. [14] that was already used in Eq. (43). This fact only emerges after trails, each
including an increasing number of terms, and is due to many cancellations among leading-order terms. It is

F, ~—=In(1—y)—¢(m)+29(1)—P(L)+Lim (1—9y?)[ —In(1—y?)—¢(m + 1)+2¢(2)— ()]
~—In(4V3mAz"?)+2¢(1) — (1) —2V3m Az In(4V3m Az '/?)

+2\/§mAzl/2[2¢(2)—¢'(%)]+ﬁ—f—\/gAzl/z .

I insert this form into Eq. (40), expand, and match terms
order by order. To leading order, I find again that k, =$%.
Thereafter, many terms cancel until I finally obtain

AK"‘i 1 R
g mlam

(51)

indicating that =1 up to logarithmic corrections.

V. CONCLUSIONS

I have shown that the adsorption-desorption transition
for a polymer near an attractive cylindrical boundary is
substantially weaker than in the case of a planar bound-
ary. While the adsorption fraction vanishes linearly in
the planar case for attractive energies approaching the
critical value, it vanishes exponentially fast in the cylin-
drical case.

The nonlinear (i.e., not mean-field-like) character of
this result demonstrates the power of a random walk on
hyperspherical lattices that was used in this model. In-
tuitively, it is clear that the exponential (inverted loga-
rithmic) behavior observed in this model arises from the
fraction of walks which ‘“almost” escape to infinity, i.e.,
from walks that would disappear to infinity if the spatial
dimension were to be D =2+07". This is a simple fact

(50)

for walks in the critical dimension D =2, independent of
the lattice. But while it is not even obvious how to model
this cylindrical geometry onto a more commonly used
lattice such as the square lattice, the hyperspherical lat-
tice makes the model readily solvable. A hypercubic lat-
tice provides far too much detail about space (which is
useful for more complicated problems). A hyperspherical
lattice, on the other hand, reduces any D-dimensional
space to a simple one-dimensional configuration, which
provides sufficient detail for spherically symmetric prob-
lems in statistical mechanics such as this. Thus it can be
expected that this lattice will lead to many more insights
into the critical behavior of simple problems that other-
wise are intractable on hypercubic lattices.

In a future paper [16], with further simplifications in
the walk model on hyperspherical lattices [17], it will be
argued that the adsorption fraction scales with a critical
coefficient (2—[2—D|)/[2—D| for 1<D <4, D+#2,
while it shows a first-order transition for D > 4.
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